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Pathogen-mediated competition, through which an invasive species carrying and trans-
mitting a pathogen can be a superior competitor to a more vulnerable resident species,
is one of the principle driving forces influencing biodiversity in nature. Using an ex-
perimental system of bacteriophage-mediated competition in bacterial populations and
a deterministic model, we have shown in Joo et al. [Proc. R. Soc. B 273,1843–1848
(2006)] that the competitive advantage conferred by the phage depends only on the
relative phage pathology and is independent of the initial phage concentration and other
phage and host parameters such as the infection-causing contact rate, the spontaneous
and infection-induced lysis rates, and the phage burst size. Here we investigate the
effects of stochastic fluctuations on bacterial invasion facilitated by bacteriophage, and
examine the validity of the deterministic approach. We use both numerical and ana-
lytical methods of stochastic processes to identify the source of noise and assess its
magnitude. We show that the conclusions obtained from the deterministic model are
robust against stochastic fluctuations, yet deviations become prominently large when
the phage are more pathological to the invading bacterial strain.

KEY WORDS: phage-mediated competition, invasion criterion, Fokker-Planck
equation, stochastic simulations

1. INTRODUCTION

Theoretical studies of ecological processes generally employ either determinis-
tic or stochastic modeling approaches. In the former case, the evolution of a

1 Department of Physics, Pennsylvania State University, University Park, PA 16802, USA. e-mail:
jjoo@phys.psu.edu.

2 Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park,
PA 16802, USA.

3 Department of Physics and Huck Institute of the Life Sciences, Pennsylvania State University,
University Park, PA 16802, USA.

229

0022-4715/07/0700-0229/0 C© 2007 Springer Science+Business Media, Inc.



230 Joo, Harvill, and Albert

population is described by (partial-) differential or difference equations. (1) In the
latter case, the population is modeled as consisting of discrete entities, and its
evolution is represented by transition probabilities. While the deterministic mod-
eling approach has been favored and widely applied to ecological processes due
to its simplicity and well-established analytic tools, (1) its applicability is limited
in principle to a system with no fluctuations and no (spatial) correlations, e.g.,
a system composed of a large number of individuals under rapid mixing. Being
more realistic representations of noisy ecological systems, the stochastic models
have been studied in the context of the stochastic interacting particle system, (2,3) in
the mathematical epidemiology,(4–7) and in the stochastic population biology.(8–10)

The stochastic modeling approach has, however, its own downside: most stochastic
models are analytically intractable and stochastic simulation, a popular alternative,
is demanding in terms of computing time. Nonetheless, the stochastic modeling
approach is indispensable when a more thorough understanding of an ecological
process is pursued.

Apparent competition, the competitive advantage conferred by a pathogen
to a less vulnerable species, is generally accepted as a major force influencing
biodiversity.(11–14) Due to the complexities originating from dynamical interac-
tions between multiple hosts and pathogens, it has been difficult to single out and
to quantitatively measure the effect of pathogen-mediated competition in nature or
laboratory.(12–19) A system of bacteria and bacteriophage, however, enables us to
overcome these difficulties; it is relatively easy to eliminate direct resource com-
petition, to measure the parameter values of the system, and even to manipulate
both host resistance mechanisms and pathogen virulence. The bacteria-phage in-
fection system is therefore one of the most suitable systems for the exploration of
pathogen-mediated competition. Moreover, studying this system can provide in-
sights on the role of bacteriophage in the formation of microbial communities. (20)

In our previous work(21) we developed an experimental system and a theo-
retical framework for studying bacteriophage-mediated competition in bacterial
populations. The experimental system consisted of two genetically identical bac-
terial strains; they differed in that one strain was a carrier of the bacteriophage
and resistant to it while the other strain was susceptible to phage infection (see
Table I). Based on the in vitro experimental set-up, we constructed a differential
equation model of phage-mediated competition between the two bacterial strains.
Most model parameters were measured experimentally, and a few unknown pa-
rameters were estimated by matching the time-series data of the two competing
populations to the experiments (see Table II and Fig. 1). The model predicted,
and experimental evidence confirmed, that the competitive advantage conferred
by the phage depends only on the relative phage pathology and is independent of
other phage and host parameters such as the infection-causing contact rate, the
spontaneous and infection-induced lysis rates, and the phage burst size.
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Fig. 1. Illustrations of phage-mediated competition obtained from in vitro experiments (symbols) and a
deterministic model (lines). The phage infection system consists of two genetically identical Bordetella
bronchiseptica bacteria (Bb) and the bacteriophage BPP-1 (�). (21) A gentamicin marker (Gm) is used
to distinguish the susceptible bacterial strain (BbGm) from the phage-carrying bacterial strain (Bb::�).
As time elapses, a fraction of BbGm become lysogens (BbGm::�) due to the phage-infection process.
Bb::� are represented by open squares and a thick solid line, BbGm::� by open circles and a thin solid
line, and the total BbGm (BbGm+BbGm::�) by filled circles and a long-dashed line, respectively.
(a) Lysogens (Bb::�) exogenously and endogenously carrying the prophage invade the BbGm strain
susceptible to phage, and (b) lysogens (Bb::�) are protected against the invading susceptible bacterial
strain (BbGm). (21) The differential equations were solved with biologically relevant parameter values.
(See Sec. 3.1 and Tables I and II for a detailed description.)

In a typical bacteriophage-mediated invasion process, the initial population
size of the invading bacterial strain is likely to be small. Therefore the stochastic
fluctuations of the bacterial population size are expected to be large and are likely to
affect the outcome of phage-mediated competition. To better understand the role of
phage-mediated competition in microbial communities, and to test the generality
of the conclusions of the deterministic model, (21) here we investigate the effects
of noise on phage-mediated competition. The phage-bacteria infection system is
modeled and analyzed with two probabilistic methods: (i) a linear Fokker-Planck
equation obtained by a systematic expansion of a full probabilistic model (i.e., a
master equation), and (ii) stochastic simulations. Both probabilistic methods are
used to identify the source of noise and assess its magnitude, through determining
the ratio of the standard deviation to the average population size of each bacterial
strain during the infection process. Finally stochastic simulations show that the
conclusions obtained from the deterministic model are robust against stochastic
fluctuations, yet deviations become large when the phage are more pathological
to the invading bacterial strain.
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Table II. Parameters Used for the Numerical Simulation of the Phage-Mediated

Competition in B. bronchiseptica

Parameter Name Range Resources

a (Free) growth rate 0.54 Measured (21)

δ Spontaneous lysis rate 0 ≤ δ < a Measured (21)

λ φ-induced lysis rate 0.08–0.17 Measured (21)

χ Burst size 10–50 Measured (21)

P Phage pathology 0 ≤ P ≤ 1 Estimated
κ Contact rate κ > 0 Estimated
Nmax Holding capacity ∼ 109 Measured (21)

Note. The two undetermined parameters P and κ [(hours·CFU/ml)−1] were estimated by comparing
the experimental results with those of the theoretical model and by minimizing discrepancies.

2. A MODEL OF PHAGE-MEDIATED COMPETITION IN BACTERIA

The system under our consideration consists of two strains of bacteria: both
bacterial strains are susceptible to phage infection and one invasive bacterial strain
contains phage. (21) Two bacterial strains are genetically identical except in their
susceptibilities to phage and in phage pathologies on them. We restricted the in-
fection system such that bacteria grow in a log phase, i.e., there is no resource
competition between them. The interactions involved in this phage-mediated com-
petition between two bacterial strains are provided diagrammatically in Fig. 2.

We model this dynamically interacting system with seven homogeneously
mixed subpopulations: Each bacterial strain can be in one of susceptible (Sj ), lyso-
genic (I j ), or latent (L j ) states, and they are in direct contact with bacteriophage
(�). All bacteria divide with a constant rate when they are in a log growth phase,
while their growth is limited when in stationary phase. Thus we assume that the
bacterial population grows with a density-dependent rate r (�) = a(1 − �/�max)
where � is the total bacterial population and �max is the maximum number of
bacteria supported by the nutrient broth environment. Susceptible bacteria (Sj ) are
uninfected and become infected through contact with phage at a rate κ j . Lysogenic
bacteria (I j ) carry lysogenic phage (�), which incorporate their genome into the
bacterial genome, and grow, replicating lysogenic phage (�) as part of the bacte-
rial chromosome, and are resistant to phage. Even though these lysogens (I j ) are
very stable without external perturbations, spontaneous induction can occur at a
low rate δ, consequently replicating the phage and lysing the host bacteria. Latent
bacteria (L j ) are in an interim state between phage infection and bacterial lysis,
and the phage replicate and then lyse the host bacteria after an incubation period
1/λ, during which the bacteria do not divide. (24) Upon infection the lysogenic
phage (�) can either take a lysogenic pathway or a lytic pathway, stochastically
determining the fate of the infected bacterium. (24) We assume that a fraction Pj



234 Joo, Harvill, and Albert

λδ

κ

r

r

S

I

φ

L

j

1–P P

jj

j

j

j

Fig. 2. Diagrammatic representation of phage-mediated competition between two bacterial strains
with different susceptibilities κ j and phage pathogenicities Pj . The subscript j ∈ {1, 2} denotes the
type of bacterial strain. Phage (�) are represented by hexagons carrying a thick segment (� DNA).
A susceptible bacterium (S j ) is represented by a rectangle containing an inner circle (bacterial DNA)
while a lysogen (I j ) is represented by a rectangle containing � DNA integrated into its bacterial DNA.
All bacterial populations grow with an identical growth rate r while a latent bacterium (L j ) is assumed
not to divide. δ and λ represent spontaneous and infection-induced lysis rates, respectively.

of infected bacteria enter a latent state (L j ) while the phage lysogenize a fraction
1 − Pj of their hosts, which enter a lysogenic state (I j ). Thus the parameter Pj

characterizes the pathogenicity of the phage, incorporating multiple aspects of
phage-host interactions resulting in damage to host fitness. In general, both the
number of phage produced (the phage burst size χ ) and the phage pathology Pj de-
pend on the culture conditions. (24) The two bacterial strains differ in susceptibility
(κ j ) and vulnerability (Pj ) to phage infection.

When the initial population size of the invading bacterial strain is small, the
stochastic fluctuations of the bacterial population size are expected to be large and
likely to affect the outcome of the invasion process. A probabilistic model of the
phage infection system is able to capture the effects of intrinsic noise on the popula-
tion dynamics of bacteria. Let us define the joint probability density Pt (η) denoting
the probability of the system to be in a state η(t) = (S1, I1, L1, S2, I2, L2,�) at
time t where Sj , I j and L j denote the number of bacteria in susceptible, latent or
infected states, respectively. The time evolution of the joint probability is deter-
mined by the transition probability per unit time T (η′|η; t) of going from a state

η to a state η′. (25,26) We assume that the transition probabilities do not depend
on the history of the previous states of the system but only on the immediately
past state. There are only a few transitions that are allowed to take place. For
instance, the number of susceptible bacteria increases from S1 to S1 + 1 through
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the division of a single susceptible bacterium and this process takes place with the
transition rate T (S1 + 1, I1, L1, S2, I2, L2,�|S1, I1, L1, S2, I2, L2,�) = r (�)S1.
The allowed transition rates are

T (Sj + 1, . . . |Sj , . . . ; t) = r (�)Sj ,

T (. . . , I j + 1, . . . | . . . , I j , . . . ; t) = r (�)I j ,

T (Sj − 1, I j + 1, . . . , � − 1|Sj , I j , . . . , �; t) = κ j (1 − Pj )�Sj (1)

T (Sj − 1, . . . , L j + 1,� − 1|Sj , . . . , L j ,�; t) = κ j Pj�Sj

T (. . . , I j − 1, . . . , � + χ | . . . , I j , . . . , �; t) = δ I j

T (. . . , L j − 1, . . . , � + χ | . . . , L j , . . . , �; t) = λL j

where �(t) = ∑
j (Sj (t) + I j (t) + L j (t)). The second line represents the division

of a lysogen; the 3rd line describes an infection process by phage taking a lysogenic
pathway while the fourth line denotes an infection process by phage taking a lytic
pathway. The last two transitions are spontaneously-induced and infection-induced
lysis processes, respectively. Bacterial subpopulations that are unchanged during
a particular transition are denoted by “. . .”. The parameters a, k j , δ and λ in
the transition rates of Eq. (1) represent the inverse of the expected waiting time
between events in an exponential event distribution and they are equivalent to the
reaction rates given in Fig. 2.

The stochastic process specified by the transition rates in Eq. (1) is Marko-
vian, thus we can immediately write down a master equation governing the time
evolution of the joint probability P(η). (25,26) The rate of change of the joint prob-
ability Pt (η) is the sum of transition rates from all other states η′ to the state η,
minus the sum of transition rates from the state η to all other states η′:

d Pt (η)

dt

=
∑

j

{(
E−1

Sj
− 1

)
[T (Sj + 1, . . . |Sj , . . . ; t)Pt (η)

+(
E−1

I j
− 1

)
[T (. . . , I j + 1, . . . | . . . , I j , . . . ; t)Pt (η)]

+(
E+1

� E+1
Sj

E−1
I j

− 1
)
[T (Sj − 1, I j + 1, . . . , � − 1|Sj , I j , . . . , �; t)Pt (η)]

+(
E+1

� E+1
Sj

E−1
L j

− 1
)
[T (Sj − 1, . . . , L j + 1,� − 1|Sj , . . . , L j ,�; t)Pt (η)]

+δ
(
E+1

I j
E−χ

� − 1
)
[T (. . . , I j − 1, . . . , � + χ | . . . , I j , . . . , �; t)Pt (η)]

+λ
(
E+1

L j
E−χ

� − 1
)
T (. . . , L j − 1, . . . , � + χ | . . . , L j , . . . , �; t)Pt (η)]

}

(2)
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where E±1
α is a step operator which acts on any function of α according to

E±1
α f (α, . . .) = f (α ± 1, . . .).

The master equation in Eq. (2) is nonlinear and analytically intractable. There
are two alternative ways to seek a partial understanding of this stochastic system:
a stochastic simulation and a linear Fokker-Planck equation obtained from a sys-
tematic approximation of the master equation.(25–27) A stochastic simulation is
one of the most accurate/exact methods to study the corresponding stochastic sys-
tem. (27) However, stochastic simulations of an infection process in a large system
are very demanding in terms of computing time, even today. Moreover, simula-
tion studies can explore only a relatively small fraction of a multi-dimensional
parameter space, thus provide neither a complete picture nor intuitive insight to
the current infection process. The linear Fokker-Planck equation is only an ap-
proximation of the full stochastic process; it describes the time-evolution of the
probability density, whose peak is moving according to macroscopic equations.
(25,26) In cases where the macroscopic equations are nonlinear, one needs to go
beyond a Gaussian approximation of fluctuations, i.e., the higher moments of the
fluctuations should be considered. In cases when an analytic solution is possible,
the linear Fokker-Planck equation method can overcome most disadvantages of
the stochastic simulations. Unfortunately such an analytic solution could not be
obtained for the master equation in Eq. (2).

In the following sections we present a systematic expansion method of the
master equation to obtain both the macroscopic equations and the linear Fokker-
Planck equation, then an algorithm of stochastic simulations.

3. SYSTEMATIC EXPANSION OF THE MASTER EQUATION

In this section we will apply van Kampen’s elegant method(25) to a nonlinear
stochastic process, in a system whose size increases exponentially in time. This
method not only allows us to obtain a deterministic version of the stochastic
model in Eq. (2) but also gives a method of finding stochastic corrections to the
deterministic result. We choose an initial system size �0 = ∑

j (Sj (0) + I j (0) +
L j (0)) + �(0) and expand the master equation in order of �

−1/2
0 . We do not

attempt to prove the validity of our application of van Kampen’s �0-expansion
method to this nonlinear stochastic system; a required condition for valid use of
�0-expansion scheme, namely the stability of fixed points, is not satisfied because
the system size increases indefinitely and there is no stationary point. However,
as shown in later sections, the linear Fokker-Planck equation obtained from this
�0-expansion method does provide very reliable results, comparable to the results
of stochastic simulations.

In the limit of infinitely large �0, the variables (Sj , I j , L j , �) become deter-
ministic and equal to (�0s j ,�0i j ,�0l j ,�0φ), where (s j , i j , l j , φ) are normalized
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quantities, e.g., s j = Sj/�0. In this infinitely large size limit the joint probability
Pt (η) will be a delta function with a peak at (�0s j ,�0i j ,�0l j ,�0φ). For large but

finite �0, we would expect P(η) to have a finite width of order �
1/2
0 . The variables

(Sj , I j , L j , �) are once again stochastic and we introduce new stochastic variables

(ξSj , ξI j , ξL j , ξ�): Sj = �0s j + �
1
2
0 ξSj , I j = �0i j + �

1
2
0 ξI j , L j = �0l j + �

1
2
0 ξL j ,

� j = �0φ j + �
1
2
0 ξ� j . These new stochastic variables represent inherent noise and

contribute to deviation of the system from the macroscopic dynamical behavior.
The new joint probability density function �t is defined by Pt (η) = �t (ξ )

where ξ = (ξS1 , ξI1 , ξL1 , ξS2 , ξI2 , ξL2 , ξ�). Let us define the step operators E±
α ,

which change α into α ± 1 and therefore ξα into ξα + �
−1/2
0 , so that in new

variables

E±1
α = 1 ± �

− 1
2

0

∂

∂ξα

+ �−1
0

2

∂2

∂ξ 2
α

± · · · (3)

The time derivative of the joint probability Pt (η) in Eq. (2) is taken at a fixed
state η = (S1, I1, L1, S2, I2, L2,�), which implies that the time-derivative taken

on both sides of α = �0α + �
1/2
0 ξα should lead to dξα/dt = −�

1/2
0 dα/dt where

α can be either S1, I1, L1, S2, I2, L2, or �. Hence,

d P(η; t)

dt
= ∂�(ξ )

∂t
−

∑

α=S1,S2,I1,I2,L1,L2,�

{

�
1
2
0

∂α

dt

∂�(ξ ; t)

∂ξα

}

. (4)

We shall assume that the joint probability density is a delta function at the initial
condition ηo, i.e., P0(η) = δη,ηo .

The full expression of the master equation in the new variables is shown
in appendix A. Here we collect several powers of �0. In Sec. 3.1 we show that
macroscopic equations emerge from the terms of order �

1/2
0 and that a so-called

invasion criterion, defined as the condition for which one bacterial population
outcompetes the other, can be obtained from these macroscopic equations. In
Sec. 3.2 we show that the terms of order �0

0 give a linear Fokker-Planck
equation whose time-dependent coefficients are determined by the macroscopic
equations.

3.1. Emergence of the Macroscopic Equations

There are a few terms of order �
1/2
0 in the master equation in the new variables

as shown in appendix A, which appear to make a large �0-expansion of the master
equation improper. However those terms in order of �

1/2
0 cancel if the following
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equations are satisfied

ds j

dt
= r (�)s j − κ j�0φs j

di j

dt
= (1 − Pj )κ j�0φs j + (r (�) − δ)i j

(5)dl j

dt
= Pjκ j�0φs j − λl j

dφ

dt
= χ

∑

j

(δφ j + λl j ) −
∑

j

κ j�0φs j

Equation (5) are identical to the deterministic equations of the corresponding
stochastic model in the limit of infinitely large �0, i.e., in the limit of negligible
fluctuations.

These equations allow for the derivation of the invasion criterion, defined as
the choice of the system parameters in Table II that makes one invading bacterial
strain dominant in number over the other strain. Suppose that an initial condition of
Eq. (5) is s1(0) > 0, s2(0) > 0, i1(0) > 0, φ(0) ≥ 0, and i2(0) = l1(0) = l2(0) = 0.
(a) In the case of φ(0) = δ = 0, there is no phage-mediated interaction between
bacteria and the ratio of s1(t) : s2(t) : i1(t) remains unchanged for t ≥ 0. (b) How-
ever when either (φ(0) = 0 and δ > 0) or φ(0) > 0, the above ratio changes in
time due to phage-mediated interactions. Even though in principle these nonlinear
coupled equations are unsolvable, we managed to obtain an analytic solution of the
macroscopic Eq. (5) in the limit of a fast infection process, i.e., (κ j�0s2(0)/a � 1
and λ/a � 1), by means of choosing appropriate time-scales and using a regular
perturbation theory. (1) (See Ref. (21) for a detailed description in a simpler sys-
tem.) We found a simple relationship between the ratios of the two total bacterial
populations:

r12(t) = r12(0)(1 − P1)/(1 − P2) (6)

where r12(t) ≡ s1(t)+i1(t)+l1(t)
s2(t)+i2(t)+l2(t) for a sufficiently long time t . Thus the final ratio

r12(t) is determined solely by three quantities, the initial ratio, r12(0), and the two
phage pathologies, and is independent of other kinetic parameters such as the
infection-causing contact rate, the spontaneous and infection-induced lysis rates,
and the phage burst size. The invasion criterion, the condition for which bacterial
strain 1 outnumbers bacterial strain 2, is simply r12(t) > 1.

Figure 3 shows the stationary ratios between the population sizes of two bac-
terial strains for a generalized deterministic infection system where both bacterial
strains are susceptible to phage infection. The simple relationship in Eq. (6), which
is represented by the straight diagonal line in Fig. 3, is proven to be true only in
the limiting case where the infection process is extremely fast, i.e., susceptible
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Fig. 3. Numerical verification of the invasion criterion of Eq. (6) for a generalized deterministic
infection system where both bacterial strains are susceptible to phage infection. The ratio r12(0)/r12(T )
was numerically evaluated by solving Eq. (5) with 2000 sets of parameters chosen uniformly in the
intervals 0 < P1, P2 < 1 for phage pathologies, 1/min{P1, P2} < χ < 100 for the phage burst size,
0 < λ/a < 0.5 for the spontaneous induction rate, 10−1s2(0) < s1(0) < 10s2(0) and 0 < i1(0), φ(0) <

10−2s2(0) for the initial concentrations of bacterial strains and phage. The time T is chosen to be a
sufficiently long time. Filled circles represent the data from 1000 sets of parameters with relatively
large �0κ j s j /a and λ/a (e.g., 0.1 < �0κ j s j /a, λ/a < 10). Open circles are from another 1000 sets
of parameters with small �0κ j s j /a and λ/a (e.g., 0 < �0κ j s j /a, λ/a < 0.1).

bacteria are rapidly infected by phage particles and lysed immediately after infec-
tion. When the infection process is slow, the stationary ratio could deviate from
the simple relationship in Eq. (6) because of its dependence on the kinetic param-
eters. We validated the invasion criterion of Eq. (6) in the range of both large and
relatively small values of κ j�0s2(0)/a and λ/a, by numerically solving Eq. (5)
with 2000 sets of parameters selected randomly from the biologically relevant
intervals. Figure 3 demonstrates that the simple relationship in Eq. (6) between
r12(0)/r12(t) and (1 − P2)/(1 − P1) is robust against parameter variations. The
results deviate from the linear relationship only for increasing phage pathology
on the invading bacterial strain 1 compared with that on bacterial strain 2, i.e.,
(1 − P2)/(1 − P1) � 1, or P1 � P2.

3.2. Linear Noise Approximation: A Linear Fokker Planck Equation

For simplicity we will assume hereafter that all bacteria grow with a growth
rate r = a in a log phase, i.e., there is no resource competition. Identifying terms
of �0

0 in the power expansion of the master equation (see appendix A) we obtain a
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linear Fokker-Planck equation (see appendix B). This approximation is called as
linear noise approximation(25) and the solution of the linear Fokker-Planck equa-
tion in appendix A is a Gaussian, (25) which means that the probability distribution
�t (ξ ) is completely specified by the first two moments, 〈ξα(t)〉 and 〈ξ 2

α (t)〉, where
α = Sj , I j , L j ,�.

Multiplying the Fokker-Planck equation by ξα and ξαξα′ and integrating over
all ξ we find the time-evolution of the first and the second moments of noise,
〈ξα〉 and 〈ξαξα′ 〉 (see appendix B). The solutions of all first moments are simple:
〈ξα(t)〉 = 0 for all t , provided that the initial condition is chosen such that initial
fluctuations vanish, i.e., 〈ξα(0)〉 = 0. The differential equations governing the
time evolution of the second moments are coupled, and their solutions can only
be attained by means of numerical integrations. We use the time evolution of the
second moments of noise to study the role of stochastic fluctuations on phage-
mediated competition, and especially to investigate the effects of noise on the
invasion criterion. Let δN j be the deviation of the total population size N j of the

j th bacterial strain from its average value, i.e., δN j = N j − 〈N j 〉 = �
1/2
0 (ξSj +

ξI j + ξL j ) where N j = Sj + I j + L j and 〈N j 〉=〈Sj 〉 + 〈I j 〉+〈L j 〉. Let us define
the normalized variance of the total population size of the j th bacterial strain

V ar (N j ) ≡ 〈δN 2
j 〉

〈N j 〉2
= �0

〈N j 〉2

{〈
ξ 2

Sj

〉 + 〈
ξ 2

I j

〉 + 〈
ξ 2

L j

〉

+2(〈ξSj ξI j 〉 + 〈ξSj ξL j 〉 + 〈ξI j ξL j 〉)
}

(7)

where 〈.〉 is a statistical ensemble average. The square root of the normalized

variance,
√

〈δN 2
j (t)〉/〈N j (t)〉, is the magnitude of noise of the j th bacterial strain

at a given time t. Another useful quantity is the normalized co-variance between
the i th bacterial strain in a state α and the j th bacterial strain in a state β:

Cov(αi , β j ) ≡ 〈δαiδβ j 〉
〈Ni 〉〈N j 〉 = �0〈ξαi ξβ j 〉

〈Ni 〉〈N j 〉 (8)

We will present the results for these variances and co-variances in Sec. 5.

4. THE GILLESPIE ALGORITHM FOR STOCHASTIC SIMULATIONS

In this section we briefly describe our application of the Gillespie algorithm
(27) for simulation of the stochastic process captured in the master equation of
Eq. (2), where in total 12 biochemical reactions take place stochastically. The
Gillespie algorithm consists of the iteration of the following steps: (i) selection of
a waiting time τ during which no reaction occurs,

τ = − 1
∑

j a j
lnθ (9)
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where θ is a random variable uniformly chosen from an interval (0, 1) and a j

is the reaction rate for the j th biochemical reaction. (ii) After such a waiting
time, which biochemical reaction will take place is determined by the following
algorithm. The occurrence of each event has a weight a j/

∑
j a j . Thus the i th

biochemical reaction is chosen if
∑i

j=1 a j < θ ′ ∑N
j=1 a j <

∑i+1
j=1 a j where θ ′ is

another random number selected from the interval (0, 1) and N is the total number
of biochemical reactions. (iii) After execution of the j th reaction, all reaction rates
that are affected by the j th reaction are updated.

We measure the averages, the normalized variances and co-variances of bac-
terial populations at various time points, by taking an average over 104 realizations
of the infection process, starting with the same initial condition. Because a nor-
malized variance or covariance is a measure of deviations of a stochastic variable
from a macroscopic value (which is regarded as a true value), it is not divided by
the sampling size.

The computing time of the Gillespie algorithm-based simulations increases
exponentially with the system size. In the absence of resource competition, the total
bacterial population increases exponentially in time. Because we need to know the
stationary ratio of the two bacterial populations, the computing time should be long
enough compared to typical time scales of the infection process. This condition
imposes a limit on the range of parameters that we can explore to investigate the
validity of the invasion criterion. We choose the values of parameters from the
biologically relevant range given in Table II and we, furthermore, set lower bounds
on the rates of infection causing contact κ j and infection-induced lysis λ, namely
κ j > κ0 and λ > λ0.

5. RESULTS

While the methodologies described in Sec. 3 and 4 apply to the general case
of two susceptible bacterial strains, in this section we limit our investigations to
a particular infection system, called a “complete infection system” hereafter, in
which bacterial strain 1 is completely lysogenic and only bacterial strain 2 is sus-
ceptible to phage infection. There are two advantages to studying the complete
infection system: 1) this is equivalent to the infection system which we studied
experimentally (21) and thus the results are immediately applicable to at least one
real biological system. 2) the probabilistic description of bacterial strain 1 (lyso-
gens) is analytically solvable as it corresponds to a stochastic birth-death process.
(25) In Sec. 5.1, studying a system consisting of only lysogens, we elucidate the
different dynamic patterns of the normalized variance when the system size re-
mains constant or when it increases. This finding provides us with the asymptotic
behavior of the normalized variances of both bacterial strains because both strains
become lysogens eventually after all susceptible bacteria are depleted from the
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system. In Sec. 5.2, we investigate the role of stochastic noise on phage-mediated
competition by identifying the source of noise and assessing its magnitude in the
complete infection system. Finally in Sec. 5.3, we investigate the effect of noise
on the invasion criterion by means of stochastic simulations.

5.1. Stochastic Birth-Death Process: Growth and Spontaneous Lysis

of Bacterial Strain 1

The dynamics of lysogens of bacterial strain 1 is completely decoupled from
that of the rest of the complete infection system and can be studied independently.
They grow at a rate r and are lysed at a rate δ. There exists an exact solution for the
master equation of this stochastic birth-death process. (28,29) Thus we can gauge
the accuracy of an approximate method for the corresponding stochastic process
by comparing it with the exact solution. The master equation of the birth-death
process is

d Pt (I1)

dt
= (

E−1
I1

− 1
)
r I1 Pt (I1) + (

E+1
I1

− 1
)
δ I1 Pt (I1) (10)

where I1(t) represents the number of lysogens at time t . I1 is transformed into a new
variable ξI1 as discussed in Sec. 3, which results in I1 = �0i1 + �

1/2
0 ξI1 , Pt (I1) =

�t (ξI1 ), and E±1
I1

= 1 ± �
−1/2
0

∂
∂ξI1

+ �−1
0
2

∂2

∂ξ 2
I1

. Then keeping terms of order �0
0

from �0-expansion of Eq. (10), we obtain the linear Fokker-Planck equation,

∂�t (ξI1 )

∂t
= (r + δ)

i1

2

∂2�t (ξI1 )

∂ξ 2
I1

+ (δ − r )
∂ξI1�t (ξI1 )

∂ξI1

(11)

where i1(t) = I1(t)/�o is a normalized quantity that evolves according to di1(t)
dt =

(r − δ)i1(t) and �0 = I1(0). Multiplying by ξI1 and ξ 2
I1

both sides of Eq. (11) and
integrating over ξI1 , we obtain the equations for the first and the second moments
of noise ξI1 :

d〈ξI1〉
dt

= (r − δ)〈ξI1〉
d〈ξ 2

I1
〉

dt
= (r + δ)i1 + 2(r − δ)〈ξ 2

I1
〉

(12)

Case 1. r > δ. When the growth rate is greater than the lysis rate, the system
size is increasing in time and the second moment of ξI1 evolves in time according
to the solution of Eq. (12): 〈ξ 2

I1
(t)〉 = (r+δ)

(r−δ) i1(0)e2(r−δ)t (1 − e−(r−δ)t ). Then the
normalized variance of lysogens reads

〈δ I 2
1 (t)〉

〈I1(t)〉2
= �0〈ξ 2

I1
(t)〉

〈I1(t)〉2
= (r + δ)

(r − δ)I1(0)
(1 − e−(r−δ)t ) (13)
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Fig. 4. (Color online) Time-evolution of the normalized variance of a birth-death process of lysogens
when the system size increases (a, b), or when it remains constant (c, d). (a, b) are time-evolutions
of the mean and the normalized variance of lysogens when the system size increases exponentially in
time, r = 0.54 and δ = 0.054. (c, d) depict those of lysogens when their growth and lysis rates are the
same, r = δ = 0.54. Solid lines represent the results of stochastic simulations while dotted lines are
the results of the macroscopic equation (a, c) or the results of the linear Fokker-Planck equation (b, d).

Asymptotically the normalized variance approaches a constant value (r + δ)/((r −
δ)I1(0)), in good agreement with the results of stochastic simulations (see
Fig. 4(b)).

Case 2. r = δ. When the growth rate is the same as the lysis rate, the system
size remains constant and the normalized variance increases linearly in time:
〈δ I 2

1 (t)〉/〈I1(t)〉2 = (r + δ)t/I1(0), exactly reproduced by stochastic simulations
as shown in Fig. 4(d).

5.2. Complete Infection System: The Dynamics of Covariances

of Stochastic Fluctuations

In this subsection, we discuss the effects of noise on phage-mediated com-
petition. We explore the dynamical patterns of the normalized variances and
covariances of the complete infection system, from which we identify the major
source of stochastic fluctuations and assess their magnitude. In the complete in-
fection system, all bacteria in strain 1 are lysogens and all bacteria in strain 2 are
susceptible to phage infection. Bacterial strain 1 (lysogens), while decoupled from
the rest of the system, play a role as the source of the phage, triggering a massive
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Fig. 5. (Color online) Time-evolution of the mean values of bacterial subpopulations (a) and the
normalized variance of total population of bacterial strain 1 and 2 (b). (a) Each subpopulation is
represented by two lines; thick lines come from macroscopic equations in Eq (5) and thin lines are
obtained from stochastic simulations. The four bacterial subpopulations are represented by different line
patterns: bacterial strain 1 in lysogenic state (solid lines), bacterial strain 2 in susceptible (dotted lines),
lysogenic (dashed lines) and latent (dot-dashed lines) states. (b) Thick solid and dashed lines represent
the normalized variances of the bacterial strain 1 and 2 from stochastic simulations, respectively, while
thin solid and dashed lines denote those from the linear Fokker-Planck equation, respectively. The
initial condition is I1(0) = 10, S2(0) = 100 and the rest are zero. The parameter values are δ = 0.054,
λ = 0.81, κ2 = 0.00054, χ = 50, and P2 = 0.98.

infection process in the susceptible bacterial strain 2. Throughout this subsection,
we make pair-wise comparisons between the results of the deterministic equations,
stochastic simulations and of the linear Fokker-Planck equation.

Figure 5(a) shows the time evolution of bacterial populations in the sus-
ceptible, lysogenic and latent states. While bacteria of strain 1 (lysogens) grow
exponentially unaffected by phage, the susceptible bacteria of strain 2 undergo a
rapid infection process, being converted either into a latent state or into lysogens.
The number of bacteria in the latent state increases, reaches a peak at a later stage
of infection process, and then decays exponentially at a rate λ. As time elapses,
eventually all susceptible bacteria are depleted from the system and both bacterial
strains become lysogens, which grow at a net growth rate a − δ. The ratio of
the two bacterial strains (lysogens) remains unchanged asymptotically. Note that
although the initial population size of bacterial strain 1 is one-tenth of the initial
population size of bacterial strain 2, strain 1 will outnumber strain 2 at a later time
due to phage-mediated competition. Pair-wise comparisons between the results
from stochastic simulation and those from deterministic equations are made in
Fig.5(a). They agree nicely with each other except a noticeable discrepancy found
in the population size of susceptible bacteria.
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Fig. 6. (Color online) Time evolution of the normalized (co-)variances of bacterial populations in
different states. See the main text for a formal definition of the normalized covariance Cov(αi , β j ).
The time-evolution of each co-variance is plotted with two lines: solid lines are from stochastic
simulations while dashed lines are from the linear Fokker-Planck equation. The same parameters and
initial conditions are used as in Fig. 5. Only 12 out of 15 co-variances are plotted.

The temporal patterns of the normalized variances of the two bacterial strains
are illustrated in Fig. 5(b). The normalized variance of bacterial strain 1 (lysogens)
increases logistically while that of bacterial strain 2 increases logistically for the
first few hours and then rapidly rises to its peak upon the onset of a massive phage
infection process taking place in the susceptible bacterial strain 2. Asymptoti-
cally, susceptible bacteria are depleted from the system and all remaining bacteria
are lysogens, and their normalized variances converge to a constant as given by
Eq. (13). Note that the linear Fokker-Planck equation underestimates the peak
value of the normalized variance, compared to the stochastic simulations, while
the stationary values of the normalized variances of both bacterial strains from
two methods agree nicely. The temporal behavior of the normalized variance of
the bacterial strain 2, i.e., the fact that it first peaks and then reaches a plateau,
implies two different sources of noise at two different time limits.

We use the dynamical patterns of the normalized covariances shown in Fig. 6
to identify the source of stochastic fluctuations in phage-mediated competition.
The normalized variance of the total population of bacterial strain 2, V ar (N2),
is composed of the 6 normalized covariances of the subpopulations of bacte-
rial strain 2, Cov(S2, S2), Cov(I2, I2), Cov(L2, L2), Cov(S2, I2), Cov(S2, L2)
and Cov(I2, L2), among which the peak values of Cov(S2, S2), Cov(I2, I2) and
Cov(L2, L2) are 10 times as large as those of Cov(S2, I2), Cov(S2, L2) and
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Fig. 7. (Color online) Time-evolution of the normalized covariance of the latent population of the
bacterial strain 2, Cov(L2, L2), as a function of the phage pathology, the contact rate κ , and the
infection-induced lysis rate λ. These time-evolutions are obtained by numerically solving the second
moment equations derived from the linear Fokker-Planck equation. A set of different values of κ and
P , (κ , P), is assigned to each panel. Each panel contains three different time-evolutions with three
different values of λ: 0.5 for the solid line, 1 for the dotted line and 10 for the dashed line. The initial
conditions and the other parameter values are the same as in Fig. 5.

Cov(I2, L2) for this particular choice of parameters. At the earlier time when
the phage infection takes place actively, the normalized covariance of the latent
population, Cov(L2, L2), reaches its peak value, the largest value among all nor-
malized covariances, at the exact moment when the normalized variance of the
total population of the bacterial strain 2, V ar (N2), hits its maximum value. Thus
the peak of the normalized variance of the total population of the bacterial strain
2 in Fig. 5(b) comes from the stochastic fluctuations of the bacterial population
in the latent state. At the later time when no infection takes place anymore, the
stationary normalized variance of the total population of the bacterial strain 2
originates solely from the stochastic fluctuations of the bacterial population in
the lysogenic state, represented by Cov(I2, I2). Both Cov(L2, L2) and Cov(I2, I2)
ultimately affect the stationary ratio of two bacterial populations in the presence
of noise.

The magnitude of the stochastic fluctuations of the initially susceptible bac-
terial population is determined predominantly by the phage pathology value. We
evaluated the peak value of the normalized covariance of the latent population,
Cov(L2, L2), and the stationary value of the normalized covariance of the lysogenic
population, Cov(I2, I2), by using both the Fokker-Planck equation and stochastic
simulations, with different values of phage pathology, infection-causing contact



Effects of Stochastic Noise on Bacteriophage-Mediated Competition in Bacteria 247

rate and the infection induced lysis rate (see Fig. 7). Both values depend mainly on
the phage pathology and increase as the phage pathology value increases to 1. For
the peak value of Cov(L2, L2), when P increases to 1, the average total population
size of the bacterial strain 2, i.e., the denominator of Cov(L2, L2), decreases and
consequently the peak value of Cov(L2, L2) increases. For the stationary value of
Cov(I2, I2), as P increases, the average population size of lysogens at the moment
when all susceptible bacteria are depleted increases and the stationary value of
Cov(I2, I2) increases according to Eq. (13) where the average size of lysogens at
this moment is used as I1(0).

As shown in Fig. 6, the time evolutions of the normalized covariances obtained
from the stochastic simulations are correctly captured by the linear Fokker-Planck
equation. Considering that the latter represents a linear approximation of the master
equation of the present nonlinear dynamical system, the agreement between the
temporal patterns from two methods is impressive. There are several obvious
disagreements between the results obtained from the two methods. The peak value
of the covariance of the latent population obtained by stochastic simulations is
twice as large as that by Fokker-Planck equation, and the temporal profiles of
the covariances from the Fokker-Planck equation are slightly shifted to the left,
compared to those obtained by stochastic simulations. The discrepancies could
be due to the nonlinear fluctuations affected by the presence of nonlinear terms
in the macroscopic equation in Eq. (5) and necessitate us to go beyond the linear
noise approximation. A second order Fokker-Planck equation can be obtained by
identifying terms of �

−1/2
0 in the power expansion of the master equation (see

Appendix A). As a result, one can obtain the closed system of second, third and
fourth moment equations of noise. This is, however, impractical for the present
bacteria-phage system because the number of the moment equations for the higher
order Fokker-Planck equation grows exponentially, e.g., there are more than 300
moment equations for the second order Fokker-Planck equation.

5.3. The Effect of Stochastic Noise on the Invasion Criterion

In this subsection we investigate the effects of noise on the validity of the
invasion criterion and measure the deviations of the stochastic results from the
simple relationship in Eq. (6) obtained from the deterministic model. For further
analysis of the effect of noise on phage-mediated competition, we need to perform
stochastic simulations with different values of kinetic parameters and to investigate
the effect of noise on the invasion criterion. We consider both a complete infection
system having only lysogens in bacterial strain 1 (P1 = 0) in Fig. 8(a) and a
generalized infection system in Fig. 8(b) where both strains are susceptible to phage
infection, yet with different degrees of susceptibility and vulnerability to phage.
The invasion criterion obtained from the deterministic equations is expressed with
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Fig. 8. (Color online) Verification of the invasion criterion by means of stochastic simulations: (a)
a complete infection system case where bacterial strain 1 is lysogen and only bacterial strain 2 is
susceptible, (b) a general infection system where both strains are susceptible to phage. Thick red
lines represent the invasion criterion obtained from deterministic equations, i.e., r12(0)/r12(T ) =
(1 − P2)/(1 − P1) where the time T is chosen to be a sufficiently long time so that there are no more
susceptible bacteria in the system. Error bars are the standard deviations calculated from the stochastic
simulation. Filled circles are for a fast infection process (κ > 10κo,λ > 10λo) while open squares are
for slow infection (κo < κ < 10κo,λo < λ < 10λo). Each one of about 500 data points in each figure
represents the result of stochastic simulations, averaged over 104 realizations. Please see the main text
for the choice of parameter values.

a simple relationship between the initial and final ratios of population sizes of
two strains and phage pathologies: r12(0)/r12(T ) = (1 − P2)/(1 − P1). Here T is
defined as a sufficiently long time such that there are no more susceptible bacteria
left to undergo the infection process and only lysogens are in the system. To
amplify the effect of noise on phage-mediated competition, we set the initial sizes
of bacterial populations to be small; they are randomly chosen from an interval
10 < Sj (0), I j (0) < 110. To make sure that the complete infection system reaches
a stationary state of having only lysogens within 24 hours, we limit the values
of the infection-causing contact rate κ j and of the infection-induced lysis rate
λ: κ j > κo and λ > λo where κo = 0.000054 and λo = 0.081. We distinguish
infection processes based on their speed: a very fast infection process (κ > 10κo,
λ > 10λo) and a slow infection process (κo < κ < 10κo, λo < λ < 10λo). The



Effects of Stochastic Noise on Bacteriophage-Mediated Competition in Bacteria 249

values of all other kinetic parameters in Fig. 2 are randomly selected from the
biologically relevant intervals (see Table 1): 0 < δ < 0.108, 1 < χ < 100 and
0 < Pj < 1. For about 500 sets of parameters for each figure in Fig. 8, we measure
the average and the standard deviation of the stationary ratio r12(0)/r12(T ) after
taking ensemble average over 104 realizations. Note that the standard deviation is
measured as a deviation from the macroscopic (true) value and it is not normalized
by the square root of the sampling size. We find that the average values of the
stationary ratios r12(0)/r12(T ) still fall onto the linear relationship with phage
pathologies, independently of other kinetic parameters.

As depicted in Fig. 8, the magnitude of the stochastic fluctuations in the
stationary ratio of two bacterial population sizes, r12(0)/r12(T ), is determined
predominantly by the phage pathology value, independently of other kinetic pa-
rameters of the system. For the complete infection system in Fig. 8(a), the standard
deviation of the stationary ratio increases when the phage pathology P2 decreases,
and for the general infection system in Fig. 8(b), where both strains are susceptible
to phage infection, the standard deviation of the stationary ratio increases when
the phage is more pathological to bacterial strain 1 than to bacterial strain 2. For
the case of the complete infection system in Fig. 8(a), the standard deviation of the
stationary ratio is approximately proportional to the standard deviation of the total
population size of bacterial strain 2, which is proportional to the square root of
the total population size of bacterial strain 2. As P2 decreases, the total population
size of bacterial strain 2 at a fixed large time T increases, and thus the standard
deviation of the stationary ratio increases. For the case of the general infection
system in Fig. 8(b), the standard deviation of the stationary ratio is approximately
proportional to the ratio of the standard deviation of the total population size of
bacterial strain 2 to the average population size of bacterial strain 1. As the differ-
ence between the phage pathology on bacterial strain 1 (P1) and on bacterial strain
2 (P2), i.e., P1 − P2, increases, the average population size of bacterial strain 1
decreases (when P1 increases) or the standard deviation of the total population
size of bacterial strain 2 increases (when P2 decreases). As a result the standard
deviation of the stationary ratio of two bacterial population sizes increases. Thus
we used the probabilistic model of phage-mediated competition in bacteria to show
that the phage pathology value determines not only the average amount but also
the magnitude of noise of phage-mediated competition, i.e., the invasion criterion
as illustrated in Eq. (6).

6. CONCLUSION

We utilized a probabilistic model of a phage-mediated invasion process to
investigate the conjecture that (i) a bacterial community structure is shaped by
phage-mediated competition between bacteria, and to examine (ii) the effect of
intrinsic noise on the conclusions obtained from a deterministic model of the
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equivalent system. We consider a generalized phage infection system where two
bacterial strains are susceptible to phage infection, yet with different degrees of
susceptibility and vulnerability to phage.

Despite the historical success of deterministic models of ecological processes,
they produce, at best, only partially correct pictures of stochastic processes in eco-
logical systems. A good number of examples of the failures of deterministic models
in ecology are presented in Ref. 2. The principal flaw of deterministic models is
their reliance on many, sometimes unphysical, assumptions such as continuous
variables, complete mixing and no rare events. Thus, we used both Fokker-Planck
equations and stochastic simulations in the study of stochastic phage-mediated
invasion processes in bacteria. Van Kampen’s system size expansion(25) was used
to obtain the linear Fokker-Planck equation while the Gillespie algorithm was used
for stochastic simulations. We found that the linear Fokker-Planck equation is a
good approximation to the nonlinear dynamics of the stochastic phage-mediated
invasion process; the time evolutions of co-variances of bacterial populations from
both Fokker-Planck equation and stochastic simulations agree well with each other.

To understand the role of noise during phage-mediated processes, we defined
noise as the ratio of the standard deviation of a bacterial population to its mean
size, identified its source, and measured its magnitude. Both analytical and numer-
ical analysis of the probabilistic model of the phage-mediated competition showed
that the initial transient noise originates from the stochastic fluctuations in the
latent bacterial population while the stationary noise is determined by fluctuations
in the lysogenic bacterial population. The magnitude of the noise is determined
predominantly by the phage pathology value, independently of other kinetic pa-
rameters: as the phage pathology increases, the magnitude of the noise, measured
as the normalized covariance, increases.

We investigated the effect of noise on the invasion criterion, which is defined
as the condition of the system parameters for which the invading bacterial strain 1
outnumbers the resident bacterial strain 2. We found from stochastic simulations
that both the average values and the standard deviations of the stationary ratios
r12(0)/r12(T ) are solely determined by the phage pathology, independently of
other kinetic parameters. The standard deviation of the stationary ratio increases
as the difference between the phage pathology on bacterial strain 1 and on bacterial
strain 2, i.e., P1 − P2, increases. Thus the probabilistic model of phage-mediated
competition in bacteria confirms that the quantitative amount of phage-mediated
competition as well as the deviations from the deterministic invasion criterion (Eq.
(6)) can still be predictable despite inherent stochastic fluctuations.

Here we assumed that the bacterial growth rates and lysis rates are identical
in the two strains. Relaxing this assumption has a drastic simplifying effect as
the steady state is determined solely by the net growth rates of the two strains.
Regardless of initial conditions in the generalized infection system, all bacteria
that survive after a massive phage infection process are lysogens, so long as the
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phage-infection is in action on both bacterial strains. If the net growth rates of two
strains are such that r1 − δ1 > r2 − δ2 > 0, asymptotically bacterial strain 1 will
outnumber strain 2, regardless of phage pathologies and initial population sizes.
If the net growth rate of any bacterial strain is negative, it will go extinct. Thus the
non-trivial case is only when the growth rates of two bacterial strains are identical.

We significantly simplified many aspects of complex pathogen-mediated dy-
namical systems to obtain this stochastic model. The two most prominent yet
neglected features are the spatial distribution and the connectivity pattern of
the host population. As demonstrated by stochastic contact processes on com-
plex networks (e.g., infinite scale-free networks) or on d-dimensional hypercubic
lattices,(3,3,30–33) these two effects may dramatically change the dynamics and
stationary states of the pathogen-mediated dynamical systems. While our exper-
imental system does not necessitate incorporation of spatial effects, complete
models of real pathogen-modulated ecological processes, e.g., phage-mediated
competition as a driving force of the oscillation of two V. cholera bacterial strains,
one toxic (phage-sensitive) and the other non-toxic (phage-carrying and resistant),
(34) may need to take these effects into account.

APPENDIX A: SYSTEMATIC EXPANSION OF THE MASTER
EQUATION

In this appendix we provide the result of the systematic expansion of the
master equation in Eq. (2). The master equation in the new variables reads
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APPENDOX B: LINEAR FOKKER-PLANCK EQUATION DERIVED
FROM SYSTEMATIC EXPANSION OF THE MASTER EQUATION

From Eq. (14) we can collect terms of order �0 and obtain the linear Fokker
Planck equation,
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We obtain the first moments of the Gaussian noise by multiplying the Eq. (15)
by ξα and integrating over all ξ , i.e.,

∫
ξαd� = 〈ξα〉.
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Similarly we obtain the second moments (covariance) of the Gaussian noise
by multiplying the Eq. (15) by ξαξβ and integrating over all ξ , i.e.,
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